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CO2 emissions have a big impact on the planet
New clean energy sources are needed



4p 4He + 2e+ + 2νe (26.7 MeV)  

T ~ 15 million kelvin, high density



D + T n (14.1 MeV) + 4He (3.5 MeV)

T ~ 150 million kelvin, low density
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Neutron Spectroscopy

Neutron emission in fusion plasmas

D + D -> n + 3He + Q

D + T  -> n + α + Q

Plasmas information can be provided by diagnostic systems, such as 

neutron and gamma-ray spectroscopy.

Neutrons are directly produced by fusion reactions

•They are not confined by magnetic field and can escape from the 

tokamak

•Neutron energy emitted from a fusion reaction:

If reactants are in thermal equilibrium with a Maxwellian velocity distribution and Ti << Q 

(valid assumption for reactor conditions) 

Neutron energy distribution is well 

approximated to a Gaussian centered at 

2.45 MeV or 14 MeV with a certain 

FWHM
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Neutron Spectroscopy

Single-crystal Diamond Detector (SDD)
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SDD   has   already   shown   excellent performances in neutron spectroscopy

High radiation hardness

Fast response time

Low sensitivity to magnetic field

Room temperature operation

Compact size

A charged particle passes 

through the diamond and 

ionizes it genereting electron-

hole pairs (E
e-h

=13 eV)

Diamond Detector

Good energy resolution

High rate capability

Single-crystal Diamond Detector
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Neutron Spectroscopy

SDD Matrix as a Vertical Neutron Spectrometr

Diamond Detector

A new system based on a 12-pixel SDD Matrix has been realized by CNR

12 independent pixel

Single-crystal CVD Diamonds are produced by Element 

six Ltd

Dimension: Area 4.5x4.5 mm2   - Thickness 0,5 mm

Measurements of 14 MeV neutrons have shown:

Uniform response of the 12 pixels

Very good energy resolution ≈ 1,3 % (190KeV)→ mainly beam broading 

(FWHM≈120KeV)



Telescope Proton Recoil Spectrometer
for fast neutrons



Why? Designed for the new beam-line ChipIR at the ISIS neutron source.

Telescope Proton Recoil Spectrometer
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Challenges

 High energy (up to 800MeV)

 High intensity (>106 neutrons∙cm−2∙s−1 with En>10MeV)

 Complex background (Neutrons, Protons, Gamma rays…)

Target

Proton Beam (800MeV)

Be reflector

Fast Neutron Beam

Secondary Scatterer

to produce beams

Atmospheric Fast Neutron Beams

Pencil & Flood
ChipIR

Mimic the atmospheric fast neutron spectrum with 108–109

times higher intensity at ground level

Direct measurements of the neutron energy spectrum and flux:

can benchmark the simulations, 

understand the underlying physics of this kind of facility better.

Micro-electronic devices failure

Single-event effects (SEE)

Cosmic radiation (neutrons)

√Telescope Proton Recoil

Diamond Detectors

Bonner Spheres

Fission Counters

Activation Foils



θ

Thin target (CH2)

E Detector

Coincidence
Neutrons Signals

 What? Method: Using recoil proton method to detect the neutron
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 Proton spectrum,MCNP

ΔE Detector

Ep=En×cos2θ

 Elastic scattering, (n, p) reaction

Telescope Proton Recoil Spectrometer
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 How?
 Design the TPR system for ChipIR with Monte-Carlo simulation
 Choose the type of the detectors to measure ΔE (Au-Si) and E (YAP and LaBr3 crystals)
 Characterization of the detectors with different thickness up to 120MeV protons

Response function, light output, …
 Test at ISIS

Advantages
—Good energy resolution
—Detection efficiency can be calculated quite accurately (could be used to measure the intensity)
Disadvantage
—Low detection efficiency



SHOULD WE DETECT THERMAL NEUTRONS WITH GEMS?

• GEMs offer the following advantages

• High rate capability (up to MHz/mm2) suitable for high flux neutron beams 
like at ESS

• Submillimetric space resolution (suited to experiment requirements)

• Time resolution from 5 ns (gas mixture dependent)

• Possibility to be realized in large areas and in different shapes

• Radiation hardness

• Low sensitivity to gamma rays (with appropriate gain)

 GEM detectors born for tracking and triggering applications (detection of 

charged particles)....

 ...but if coupled to a solid state converter they can detect

 Thermal Neutrons  10Boron converter  

 Neutrons are detected using the productus (alpha,Li) from nuclear reaction 
10B(n,alpha)7Li

 Face 3He world shortage
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Scheme and Principle of operation
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Using low θ values (few degs) the path of the neutron inside the 

B4C is increased  Higher efficiency when detector is inclined
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Detector Assembly
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The full Lamella System. A total of 48 lamellas have been

mounted mounted. Their distance is 2 mm

Assembly with Triple GEM 

detector 

128 Pads of area 6x12 mm2

have been used as anode



Thanks for your attention!


