Particle Physics and Astroparticles Physics

Particle Physics Research Topics

Accelerator neutrino physics: the Dune and Enubet experiments

Participants: M. Bonesini, A. Branca, C. Brizzolari, C. Cattadori, A. Falcone, C. Gotti, G. Pessina, F. Terranova, M. Torti

Particle accelerators can produce high intensity neutrino beams to be detected thousands of kilometers far from the source. Accelerator neutrino beams produce particles whose flux, flavor and energy is extremely well controlled and allow for a detailed study of neutrino oscillations and matter-antimatter asymmetries. The most ambitious accelerator neutrino experiment ever conceived is DUNE: the US flagship facility in particle physics under construction at Fermilab (beam) and South Dakota (detector), and supported by an international collaboration of about 1100 physicists.
Since 2019, the physicists of our Department coordinate the realization of the DUNE photosensors and contribute to the prototyping and data analysis of these detectors at CERN. In addition, we proposed in 2015 a new technique to reduce the systematic uncertainties in DUNE based on the “monitored neutrino beam” concept. In the monitored neutrino beams, the neutrino flux is measured in a direct manner by detecting the charged leptons produced in the decay tunnel. This technique is developed by an experiment approved at CERN in 2019 and called NP06/ENUBET. The experiment is coordinated by the Departments of Milano-Bicocca and Padova.


M.Calvi, S.Capelli, P.Carniti, D. Fazzini, J. García Pardiñas, C.Gotti, M.Martinelli, L. Martinazzoli, C. Matteuzzi, S. Meloni, A.Minotti, G.Pessina, E.B. Shields 

LHCb is one of the four main experiments taking data at the large proton-proton collider LHC at the CERN laboratory in Geneva. It is mainly devoted to the physics of beauty and charm hadrons. The Standard Model (SM) has proven to be able to describe experimental results with outstanding success. However it leaves several open questions, like the origin of the matter-antimatter asymmetry in the universe, the reason for the three replica of lepton and quarks families, the large differences existing among their masses and coupling constants etc.. The main aim of LHCb is the search for possible evidences of physics beyond the SM from the comparison of its predictions to very precise measurements. LHCb studies CP violating processes in the beauty and charm sectors and searches for evidence of rare events. LHCb has demonstrated to be well suited for extensive studies of the production and decay of all kinds of beauty and charm hadrons, it has provided a large amount of results which increase the knowledge in hadronic physics. The LHCb detector is going through a major upgrade to resume taking data in 2022 with increased data-taking capabilities.

The Milano group is part of the LHCb Collaboration which consists of physicists coming from 90 Universities and laboratories distributed in 19 different countries, for a total of about 1500 members.

Misura Diretta della Massa del Neutrino e microbolometri

Neutrino/Muon Physics at RAL and FNAL accelerators

Dark Matter Detection with a bubble chamber

A. Pullia

Nuclear and Subnuclear Physics Techniques applied to Medical Physics

Nuclear and Subnuclear Physics Techniques applied to Environmental Physics

Astroparticle Physics Research Topics

AMS-02 on the International Space Station

P.G. Rancoita, M. Gervasi, M. Zannoni, S. Della Torre, D. Grandi, M .Tacconi, G. La Vacca, D. Rozza, M.J. Boschini, S. Pensotti, G .Boella

The Alpha Magnetic Spectrometer (AMS-02) is a state-of-the-art particle physics detector designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for antimatter, dark matter while performing precision measurements of cosmic rays composition and flux. AMS-02 is built, tested and operated by an international Collaboration of 56 institutions from 16 countries.

Experimental Cosmology at microwaves - Cosmic Microwave Background

M. Gervasi, M. Zannoni, A. Baù, A. Passerini, R. Mainini

B-modes of CMB polarization are signals probing the gravitational waves background released during the inflationary epoch of the primordial universe. QUBIC is a bolometric interferometer operating from Antarctica and LSPE is a stratospheric balloon borne experiment searching for these signals. Besides, the interaction of CMB photons with the intra-cluster medium of galaxy clusters is studied to get information on the physics of the clusters and on the cosmological evolution of stuctures. Spectroscopic obeservations are carried on with OLIMPO program on stratospheric balloon and with Millimetron space program.

Job Opportunities